Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
BMC Med ; 19(1): 94, 2021 04 14.
Article in English | MEDLINE | ID: covidwho-1388761

ABSTRACT

BACKGROUND: Balancing the control of SARS-CoV-2 transmission with the resumption of travel is a global priority. Current recommendations include mitigation measures before, during, and after travel. Pre- and post-travel strategies including symptom monitoring, antigen or nucleic acid amplification testing, and quarantine can be combined in multiple ways considering different trade-offs in feasibility, adherence, effectiveness, cost, and adverse consequences. METHODS: We used a mathematical model to analyze the expected effectiveness of symptom monitoring, testing, and quarantine under different estimates of the infectious period, test-positivity relative to time of infection, and test sensitivity to reduce the risk of transmission from infected travelers during and after travel. RESULTS: If infection occurs 0-7 days prior to travel, immediate isolation following symptom onset prior to or during travel reduces risk of transmission while traveling by 30-35%. Pre-departure testing can further reduce risk, with testing closer to the time of travel being optimal even if test sensitivity is lower than an earlier test. For example, testing on the day of departure can reduce risk while traveling by 44-72%. For transmission risk after travel with infection time up to 7 days prior to arrival at the destination, isolation based on symptom monitoring reduced introduction risk at the destination by 42-56%. A 14-day quarantine after arrival, without symptom monitoring or testing, can reduce post-travel risk by 96-100% on its own. However, a shorter quarantine of 7 days combined with symptom monitoring and a test on day 5-6 after arrival is also effective (97--100%) at reducing introduction risk and is less burdensome, which may improve adherence. CONCLUSIONS: Quarantine is an effective measure to reduce SARS-CoV-2 transmission risk from travelers and can be enhanced by the addition of symptom monitoring and testing. Optimal test timing depends on the effectiveness of quarantine: with low adherence or no quarantine, optimal test timing is close to the time of arrival; with effective quarantine, testing a few days later optimizes sensitivity to detect those infected immediately before or while traveling. These measures can complement recommendations such as social distancing, using masks, and hand hygiene, to further reduce risk during and after travel.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , Quarantine/methods , Travel-Related Illness , COVID-19/diagnosis , Disease Transmission, Infectious/prevention & control , Humans , Models, Statistical , SARS-CoV-2/isolation & purification
2.
MMWR Morb Mortal Wkly Rep ; 69(45): 1681-1685, 2020 Nov 13.
Article in English | MEDLINE | ID: covidwho-922983

ABSTRACT

In January 2020, with support from the U.S. Department of Homeland Security (DHS), CDC instituted an enhanced entry risk assessment and management (screening) program for air passengers arriving from certain countries with widespread, sustained transmission of SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19). The objectives of the screening program were to reduce the importation of COVID-19 cases into the United States and slow subsequent spread within states. Screening aimed to identify travelers with COVID-19-like illness or who had a known exposure to a person with COVID-19 and separate them from others. Screening also aimed to inform all screened travelers about self-monitoring and other recommendations to prevent disease spread and obtain their contact information to share with public health authorities in destination states. CDC delegated postarrival management of crew members to airline occupational health programs by issuing joint guidance with the Federal Aviation Administration.* During January 17-September 13, 2020, a total of 766,044 travelers were screened, 298 (0.04%) of whom met criteria for public health assessment; 35 (0.005%) were tested for SARS-CoV-2, and nine (0.001%) had a positive test result. CDC shared contact information with states for approximately 68% of screened travelers because of data collection challenges and some states' opting out of receiving data. The low case detection rate of this resource-intensive program highlighted the need for fundamental change in the U.S. border health strategy. Because SARS-CoV-2 infection and transmission can occur in the absence of symptoms and because the symptoms of COVID-19 are nonspecific, symptom-based screening programs are ineffective for case detection. Since the screening program ended on September 14, 2020, efforts to reduce COVID-19 importation have focused on enhancing communications with travelers to promote recommended preventive measures, reinforcing mechanisms to refer overtly ill travelers to CDC, and enhancing public health response capacity at ports of entry. More efficient collection of contact information for international air passengers before arrival and real-time transfer of data to U.S. health departments would facilitate timely postarrival public health management, including contact tracing, when indicated. Incorporating health attestations, predeparture and postarrival testing, and a period of limited movement after higher-risk travel, might reduce risk for transmission during travel and translocation of SARS-CoV-2 between geographic areas and help guide more individualized postarrival recommendations.


Subject(s)
Airports , Communicable Diseases, Imported/prevention & control , Coronavirus Infections/prevention & control , Mass Screening , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , COVID-19 , Centers for Disease Control and Prevention, U.S. , Communicable Diseases, Imported/epidemiology , Coronavirus Infections/epidemiology , Humans , Pneumonia, Viral/epidemiology , Risk Assessment , Travel , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL